Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Kinetics and reactivity of the flavin and heme cofactors of cellobiose dehydrogenase from Phanerochaete chrysosporium.

Identifieur interne : 000A77 ( Main/Exploration ); précédent : 000A76; suivant : 000A78

Kinetics and reactivity of the flavin and heme cofactors of cellobiose dehydrogenase from Phanerochaete chrysosporium.

Auteurs : M D Cameron [États-Unis] ; S D Aust

Source :

RBID : pubmed:11063597

Descripteurs français

English descriptors

Abstract

The flavin cofactor within cellobiose dehydrogenase (CDH) was found to be responsible for the reduction of all electron acceptors tested. This includes cytochrome c, the reduction of which has been reported to be by the reduced heme of CDH. The heme group was shown to affect the reactivity and activation energy with respect to individual electron acceptors, but the heme group was not involved in the direct transfer of electrons to substrate. A complicated interaction was found to exist between the flavin and heme of cellobiose dehydrogenase. The addition of electron acceptors was shown to increase the rate of flavin reduction and the electron transfer rate between the flavin and heme. All electron acceptors tested appeared to be reduced by the flavin domain. The addition of ferric iron eliminated the flavin radical present in reduced CDH, as detected by low temperature ESR spectroscopy, while it increased the flavin radical ESR signal in the independent flavin domain, more commonly referred to as cellobiose:quinone oxidoreductase (CBQR). Conversely, no radical was detected with either CDH or CBQR upon the addition of methyl-1,4-benzoquinone. Similar reaction rates and activation energies were determined for methyl-1,4-benzoquinone with both CDH and CBQR, whereas the rate of iron reduction by CDH was five times higher than by CBQR, and its activation energy was 38 kJ/mol lower than that of CBQR. Oxygen, which may be reduced by either one or two electrons, was found to behave like a two-electron acceptor. Superoxide production was found only upon the inclusion of iron. Additionally, information is presented indicating that the site of substrate reduction may be in the cleft between the flavin and heme domains.

DOI: 10.1021/bi000862c
PubMed: 11063597


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Kinetics and reactivity of the flavin and heme cofactors of cellobiose dehydrogenase from Phanerochaete chrysosporium.</title>
<author>
<name sortKey="Cameron, M D" sort="Cameron, M D" uniqKey="Cameron M" first="M D" last="Cameron">M D Cameron</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biotechnology Center, Utah State University, Logan, Utah 84322-4705, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biotechnology Center, Utah State University, Logan, Utah 84322-4705</wicri:regionArea>
<wicri:noRegion>Utah 84322-4705</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Aust, S D" sort="Aust, S D" uniqKey="Aust S" first="S D" last="Aust">S D Aust</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2000">2000</date>
<idno type="RBID">pubmed:11063597</idno>
<idno type="pmid">11063597</idno>
<idno type="doi">10.1021/bi000862c</idno>
<idno type="wicri:Area/Main/Corpus">000A78</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A78</idno>
<idno type="wicri:Area/Main/Curation">000A78</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A78</idno>
<idno type="wicri:Area/Main/Exploration">000A78</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Kinetics and reactivity of the flavin and heme cofactors of cellobiose dehydrogenase from Phanerochaete chrysosporium.</title>
<author>
<name sortKey="Cameron, M D" sort="Cameron, M D" uniqKey="Cameron M" first="M D" last="Cameron">M D Cameron</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biotechnology Center, Utah State University, Logan, Utah 84322-4705, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biotechnology Center, Utah State University, Logan, Utah 84322-4705</wicri:regionArea>
<wicri:noRegion>Utah 84322-4705</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Aust, S D" sort="Aust, S D" uniqKey="Aust S" first="S D" last="Aust">S D Aust</name>
</author>
</analytic>
<series>
<title level="j">Biochemistry</title>
<idno type="ISSN">0006-2960</idno>
<imprint>
<date when="2000" type="published">2000</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbohydrate Dehydrogenases (chemistry)</term>
<term>Carbohydrate Dehydrogenases (metabolism)</term>
<term>Cellobiose (chemistry)</term>
<term>Cytochrome c Group (antagonists & inhibitors)</term>
<term>Cytochrome c Group (chemistry)</term>
<term>Ferric Compounds (chemistry)</term>
<term>Flavin-Adenine Dinucleotide (chemistry)</term>
<term>Glucose Oxidase (chemistry)</term>
<term>Heme (chemistry)</term>
<term>Iron (chemistry)</term>
<term>Kinetics (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Phanerochaete (enzymology)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Reducing Agents (chemistry)</term>
<term>Spectrophotometry, Ultraviolet (MeSH)</term>
<term>Spectrum Analysis (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse spectrale (MeSH)</term>
<term>Carbohydrate dehydrogenases (composition chimique)</term>
<term>Carbohydrate dehydrogenases (métabolisme)</term>
<term>Cellobiose (composition chimique)</term>
<term>Cinétique (MeSH)</term>
<term>Composés du fer III (composition chimique)</term>
<term>Cytochromes de type c (antagonistes et inhibiteurs)</term>
<term>Cytochromes de type c (composition chimique)</term>
<term>Fer (composition chimique)</term>
<term>Flavine adénine dinucléotide (composition chimique)</term>
<term>Glucose oxidase (composition chimique)</term>
<term>Hème (composition chimique)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Phanerochaete (enzymologie)</term>
<term>Réducteurs (composition chimique)</term>
<term>Spectrophotométrie UV (MeSH)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Cytochrome c Group</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Carbohydrate Dehydrogenases</term>
<term>Cellobiose</term>
<term>Cytochrome c Group</term>
<term>Ferric Compounds</term>
<term>Flavin-Adenine Dinucleotide</term>
<term>Glucose Oxidase</term>
<term>Heme</term>
<term>Iron</term>
<term>Reducing Agents</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbohydrate Dehydrogenases</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Cytochromes de type c</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Carbohydrate dehydrogenases</term>
<term>Cellobiose</term>
<term>Composés du fer III</term>
<term>Cytochromes de type c</term>
<term>Fer</term>
<term>Flavine adénine dinucléotide</term>
<term>Glucose oxidase</term>
<term>Hème</term>
<term>Réducteurs</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Carbohydrate dehydrogenases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Kinetics</term>
<term>Oxidation-Reduction</term>
<term>Protein Structure, Tertiary</term>
<term>Spectrophotometry, Ultraviolet</term>
<term>Spectrum Analysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse spectrale</term>
<term>Cinétique</term>
<term>Oxydoréduction</term>
<term>Spectrophotométrie UV</term>
<term>Structure tertiaire des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The flavin cofactor within cellobiose dehydrogenase (CDH) was found to be responsible for the reduction of all electron acceptors tested. This includes cytochrome c, the reduction of which has been reported to be by the reduced heme of CDH. The heme group was shown to affect the reactivity and activation energy with respect to individual electron acceptors, but the heme group was not involved in the direct transfer of electrons to substrate. A complicated interaction was found to exist between the flavin and heme of cellobiose dehydrogenase. The addition of electron acceptors was shown to increase the rate of flavin reduction and the electron transfer rate between the flavin and heme. All electron acceptors tested appeared to be reduced by the flavin domain. The addition of ferric iron eliminated the flavin radical present in reduced CDH, as detected by low temperature ESR spectroscopy, while it increased the flavin radical ESR signal in the independent flavin domain, more commonly referred to as cellobiose:quinone oxidoreductase (CBQR). Conversely, no radical was detected with either CDH or CBQR upon the addition of methyl-1,4-benzoquinone. Similar reaction rates and activation energies were determined for methyl-1,4-benzoquinone with both CDH and CBQR, whereas the rate of iron reduction by CDH was five times higher than by CBQR, and its activation energy was 38 kJ/mol lower than that of CBQR. Oxygen, which may be reduced by either one or two electrons, was found to behave like a two-electron acceptor. Superoxide production was found only upon the inclusion of iron. Additionally, information is presented indicating that the site of substrate reduction may be in the cleft between the flavin and heme domains.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">11063597</PMID>
<DateCompleted>
<Year>2000</Year>
<Month>12</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>06</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0006-2960</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>39</Volume>
<Issue>44</Issue>
<PubDate>
<Year>2000</Year>
<Month>Nov</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>Biochemistry</Title>
<ISOAbbreviation>Biochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>Kinetics and reactivity of the flavin and heme cofactors of cellobiose dehydrogenase from Phanerochaete chrysosporium.</ArticleTitle>
<Pagination>
<MedlinePgn>13595-601</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The flavin cofactor within cellobiose dehydrogenase (CDH) was found to be responsible for the reduction of all electron acceptors tested. This includes cytochrome c, the reduction of which has been reported to be by the reduced heme of CDH. The heme group was shown to affect the reactivity and activation energy with respect to individual electron acceptors, but the heme group was not involved in the direct transfer of electrons to substrate. A complicated interaction was found to exist between the flavin and heme of cellobiose dehydrogenase. The addition of electron acceptors was shown to increase the rate of flavin reduction and the electron transfer rate between the flavin and heme. All electron acceptors tested appeared to be reduced by the flavin domain. The addition of ferric iron eliminated the flavin radical present in reduced CDH, as detected by low temperature ESR spectroscopy, while it increased the flavin radical ESR signal in the independent flavin domain, more commonly referred to as cellobiose:quinone oxidoreductase (CBQR). Conversely, no radical was detected with either CDH or CBQR upon the addition of methyl-1,4-benzoquinone. Similar reaction rates and activation energies were determined for methyl-1,4-benzoquinone with both CDH and CBQR, whereas the rate of iron reduction by CDH was five times higher than by CBQR, and its activation energy was 38 kJ/mol lower than that of CBQR. Oxygen, which may be reduced by either one or two electrons, was found to behave like a two-electron acceptor. Superoxide production was found only upon the inclusion of iron. Additionally, information is presented indicating that the site of substrate reduction may be in the cleft between the flavin and heme domains.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cameron</LastName>
<ForeName>M D</ForeName>
<Initials>MD</Initials>
<AffiliationInfo>
<Affiliation>Biotechnology Center, Utah State University, Logan, Utah 84322-4705, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Aust</LastName>
<ForeName>S D</ForeName>
<Initials>SD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochemistry</MedlineTA>
<NlmUniqueID>0370623</NlmUniqueID>
<ISSNLinking>0006-2960</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003574">Cytochrome c Group</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005290">Ferric Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019163">Reducing Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>146-14-5</RegistryNumber>
<NameOfSubstance UI="D005182">Flavin-Adenine Dinucleotide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>16462-44-5</RegistryNumber>
<NameOfSubstance UI="D002475">Cellobiose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>42VZT0U6YR</RegistryNumber>
<NameOfSubstance UI="D006418">Heme</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.-</RegistryNumber>
<NameOfSubstance UI="D002237">Carbohydrate Dehydrogenases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.3.4</RegistryNumber>
<NameOfSubstance UI="D005949">Glucose Oxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.99.18</RegistryNumber>
<NameOfSubstance UI="C019859">cellobiose-quinone oxidoreductase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002237" MajorTopicYN="N">Carbohydrate Dehydrogenases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002475" MajorTopicYN="N">Cellobiose</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003574" MajorTopicYN="N">Cytochrome c Group</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005290" MajorTopicYN="N">Ferric Compounds</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005182" MajorTopicYN="N">Flavin-Adenine Dinucleotide</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005949" MajorTopicYN="N">Glucose Oxidase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006418" MajorTopicYN="N">Heme</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019163" MajorTopicYN="N">Reducing Agents</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013056" MajorTopicYN="N">Spectrophotometry, Ultraviolet</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013057" MajorTopicYN="N">Spectrum Analysis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2000</Year>
<Month>11</Month>
<Day>7</Day>
<Hour>11</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2001</Year>
<Month>2</Month>
<Day>28</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2000</Year>
<Month>11</Month>
<Day>7</Day>
<Hour>11</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11063597</ArticleId>
<ArticleId IdType="pii">bi000862c</ArticleId>
<ArticleId IdType="doi">10.1021/bi000862c</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Aust, S D" sort="Aust, S D" uniqKey="Aust S" first="S D" last="Aust">S D Aust</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Cameron, M D" sort="Cameron, M D" uniqKey="Cameron M" first="M D" last="Cameron">M D Cameron</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A77 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A77 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:11063597
   |texte=   Kinetics and reactivity of the flavin and heme cofactors of cellobiose dehydrogenase from Phanerochaete chrysosporium.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:11063597" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020